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Fig. 5. Transfinite-element and experimental measurements for |S12|, |S21],
[S2s], and |S32| of an equal-split power divider.
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Fig. 6. Calculated amplitude of the TE1o mode at each port of an equal-split

power divider for an excitation wave at port-2.
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An Efficient Synthesis Technique of Tapered
Transmission Line with Loss and Dispersion

Eui Joon Park

Abstract—A sythesis technique of lossy and dispersive tapered trans-
mission line is newly presented that extends lossless cases suggested by
Klopfenstein [1] and others [2]-[4]. A special optimization process based
on the Fourier transform pair [5] and generalized Taylor’s procedure
[6] is performed to extract the exact null points of lobe-like frequency
response in terms of the input reflection coefficient of lossy-tapered line in
which the loss may be frequency dependent and distance dependent. The
theory is verified by evaluation of a synthesized microstrip taper profile
in the lossy case and is expected to be helpful for design of tapered line
in the high-frequency microwave integrated circuits (MIC’s) with loss.

I. INTRODUCTION

The tapered transnsmission line has been widely used in monolithic
microwave/millimeter-wave integrated circuits (MMIC’s) and high
clock rate digital integrated circuits for the impedance transformation.

So far, no accurate synthesis for a specified frequency response
representing input reflection coefficient has been given for lossy
tapered transmission lines. Consider a tapered line, supporting a
non-TEM mode, which is used as a transformer to match a line of
impedance to a load of impedance (Fig. 1). It is well known that
the input reflection coefficient for a tapered line is expressible to
good approximated solution (for the case of p < 1) of the Riccati
equation [1]; [5]

pi(w) = /(;L @% - exp {—2 /OZ a(w, z') dz'}
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Fig. 1. Tapered transmission line.
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Here Z = Z/Z: is a normalized impedance that is a function

of frequency and distance = along the taper and 3 is a phase
constant. In previous synthesis [2], [4] for the normal cases such as
exponential or Chebyshev response, the attenuation constant a(w, )
has not been considered. If the characteristic impedance Z(w, z)
is required to satisfy an arbitrary specified lobe heights of p, in
the frequency domain, conventional Fourier transform pair [5] is
insufficient because the taper profile for other than the normal cases
is previously not known. If the taper profile is achieved in terms
of a desired frequency response in the lossless state, the line will
have a deviation of the response by loss. So the deviation makes the
synthesized lossless tapered line have an arbitrary response.

The concept of control of lobe height was originally proposed by
Hyneman [6] who has employed a deterministic perturbation of the
zeros of the antenna pattern function to suppress sidelobe levels in
particular prescribed angular directions. This method has been applied
to the design of tapered lines with a controlled frequency response
by Mahon and Elliott [3]. However, this method is limited to lossless
lines with fixed phase constant.

In this paper, another synthesis method is proposed introduc-
ing conventional Fourier transform pair and generalized Taylor’s
procedure in cases where frequency-dependent loss and dispersive
property, which are functions of distance along the tapered line, are
considered. The synthesis technique by proper optimization process
to control null points in the lossy case is applied to the design of a
microstrip impedance transformer. The result shows that taking the
effect of loss on the determination of taper profile into consideration
is expected to be helpful especially for high-frequency dispersive
integrated circuits and interconnects with high loss.

II. SYNTHESIS

In the lossless case (a = 0), (1) is expressible by the following
Fourier transform pair [5]

f(u)=/ g(ple 7P dp ()
1o pu 5 _ 1 dinZ
olp) = 5 /_oof(U)e =3 3)
where
1
u = —/ Plw,z) dz “4)
T Jo

f(u) represents |p;(w)| in the lossless case. = is substituted with
p = 2n(z/L—1/2) and =/ L is treated in terms of the electrical length
[2]. Since the taper profiles such as the exponential or Chebyshev
taper are previously given, the electrical length is calculated from
(4) and then the frequency response corresponding to the electrical

TABLE I
INiTIAL AND OPTIMUM VALUES OF NULL POINTS IN THE LossLess CASE
Y, %, Uy Uy ot}
[ 1 2 3 4 5
#1 1083198 | 1.71024 | 2.72194 | 3.76768 | 4.839Y8
#2 11.23293 | 1.86008 | 2.61598 | 3.83528 | 5.10789

length of a dispersive tapered line is calculated from (2). If the desired
response is established arbitrarily, it is difficult to calculate (2) and (3)
because the taper profile is not known. This problem can be solved
by the following generalized Taylor’s procedure

Al u z
1 Za \ sin mu 7,1—:[1<1_ (5:> )
f(u) :§<11'1 7) N ’
1 TU H(l : (3)2)
n=1 n

n=1.2-,N. )

This equation involves the frequency response of exponential taper
in the case of u, = n and provides various responses according
to the perturbation of u,. Here N determines the passband. For
example, N = 5 means 5.5: 1 passband and the outer band of the
passband consists with the frequency response of the exponential
taper. When the number of the peak values of lobe-like frequency
response arbitrarily established is NV in the lossless case, the null
point u,, must be properly chosen for desired response. This may be
realized by an optimization process. Let f..(u) be m'th peak value
and the error function E'(U) is defined as follows:

N

EW) =Y [1n(fmU)/Sm(w)

m=1

m=12--.N (6

in which 7 is the iteration number and U = [u1 u2 us -+ u,). The
least square method is used for minimization of the error function.
Minimization of E(U) is achieved by updating U to reduce the
difference between the performance f.,(U) achieved at any u, and
the specifications S, (w) representing an objective m'th peak values.
Here U is updated as

Upr =U; —ar- HHU)) - V[E(U))] (N

where 0 < oy <1 and H is the Hessian matrix. The difficulty of
inverse Hessian matrix at each stage of iteration in (7) can be easily
overcome by using an approximation to the inverse by the Davidon-
Fletcher-Powell algorithm. For example, the optimum null points of
the Chebyshev taper (#1) in which the tolerable reflection coefficient
is 0.1 within the passband (5.5: 1) and arbitrary taper (#2) in which
the each lobe peaks are 0.02, 0.02, 0.05, 0.05, 0.02, successively,
shown in Table I, respectively. Here un o is the initial values and
consists with the null points of the exponential taper. Since the locus
of reflection coefficients in the u domain cannot be distinguished
from any phase constant, v = J.L /7 may be used instead of (4) [4].
Therefore, although 3(w, ) has not been known, the v domain can be
established by making values of 3L varied within the involved range.

As a consequence, the viewpoint that the optimum null point can
be determined for arbitrarily specified frequency response implies
the possibility for synthesis in the lossy case. This is because if the
frequency response synthesized in the lossless case varies by loss,
the peak values vary. The peak values varied can be fitted to desired
peak values by proper perturbation of null points.

For taking account of a loss, (1) is directly calculated by letting
the characteristic impedance synthesized in the lossless case assume
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the initial value, hence representing the frequency respbnse in the
lossy case. The resulting peak values in the passband are subtracted
from the desired values and the differences are added to the desired
peak values. This makes the new objective peak values varied at each
iteration to extract the optimum null points. The new objective peak
values is expressible as

SEH (W) = Din(w) = RE(w) + S5 (w),  m=1,2,---,N (8

in which & is the iteration number and $%;* (w) is substituted into (6).
This varying objective peak values consist of rn'th peaks. D, (w) is
the initial desired one and- R,,(w) means the m’th peaks calculated
in (1). Sp,(w), namely the initial state of varying objective peaks,
is substituted by D, (w). The summary of the algorithm mentioned
above is as follows.

1) Determine the passband and the initial desired peak values
D,.,(w) of the frequency response.

2) Calculate the optimum u,, from (5)—(7) in the « domain for
the lossless case. And synthesize the Z(w, z). In this process,
set S9,(w) = Dy (w) for the k = 0.

3) Calculate |p;(w)| in the f domain for the lossy case using (1)
and Z(w, z) previously synthesized and obtain the correspond-
ing m'th peaks R, (w).

4) Obtain the objective peaks Sit!(w) varied at each iteration
and repeat the above steps from 2) until

> In(Bp (w)/ D (@) < e,

m=1

m=1,2---,N. (9

The covergence criteria adopted throughout are 107! for (6) and
107 for (9), respectively, and the least square method is used. If the
criterion of (9) is satisfied, the corresponding Z(w, z) provides the
final taper profile for the lossy case.

III. NUMERICAL RESULTS AND VERIFICATION

If a microstrip transformer for Z»/Z; =2 (Z; =50 Q at f = 0)
is to be designed for example, the frequency characteristics of the
attenuafion and phase costants, which are frequency and distance-
dependent, have to be considered. The attenuation constant consists
of o and ag due to the loss of strip conductor and dielectric,
respectively. In this paper, the well-known closed forms [7], [8] are
used for the attenuation constant. The phase constant is expressible
as #(w, z) = wa/€res{w, z)/c in which the effective permittivity
€ref(w, 2) [9] has dispersive characteristic and ¢ is the velocity of
light. In the optimization process, the varying taper profile is set by
maintaining the strip width at f = 0 for each repetition in which
the variation of characteristic impedance, according to the variation
of frequency under the established taper, is also accounted. Fig. 2
represents the Chebyshev response optimized for the lossless case
(solid line) having the tolerable reflection coefficient p; = 0.1 in
5.5:1 passband and the aspects of variation by loss for arbitrary
microstrip configurations (A and B). Here h,t, and p. represent
substrate height, strip thickness, and resistivity of strip conductor,
respectively. Fig. 2 shows that the loss only affects the attenuation.
If the frequency response in. the lossy case is to be the Chebyshev
response, the characteristic impedance of taper previously established
under the lossless state has to be modified. For this modification, the
synthesis has been achieved using (1)—(9) after six iterations for A and
B shown in Fig. 2. Fig. 3 is the frequency response in the domain
showing a shift of null points that are used for synthesis of taper
profile in the lossy case and represents the variations of the electrical
length. The optimized null points are shown in Table IL

This result is applied to (3) synthesizing the characteristic
impedance Z(w, z) and then the frequency response in the lossy case

04
5
h | & | ¢ R (at10GHz) L

B 0.635 0.017| 1.89 1.0
é 034} Almm]|102| fmm)uc em) %902 | e
S 0.635 0.5 30 0.015 1.0
3 [mm]| 11-9) [ um] |[u€. cm] fcm]
g 02
§ T :Lossless 77 :Lossy
%
~
B 01 5

Frequency [GHz]

Fig. 2. Frequency characteristics due to variation of frequency in the lossy
case (Chebyshev taper in the 5.5:1 passband).
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Fig. 3. Input reflection coefficients in the u domain for synthesis of char-
acteristic impedance.

: TABLE 1I
INrTIAL AND OPTIMUM VALUES OF POINTS IN THE LOSSY. CASE
“, u, Uy Uy Ug
u: 0.83198 ]1.71024 | 2.72194 | 3.76768 1 4.83Y98
A 081789 | 1.68730 ] 2.69453 | 3.74130 | 481959
B 10.79808 | 1.67474 | 2.68432 ] 3.73334 | 481370

from (1) is shown in Fig. 4. This pattern represents the Chebyshev
response in the lossy case. The microstrip taper profile in terms of
characteristic impedance is shown in Fig. 5 where the lossless and
lossy cases are compared. This figure represents maximum error of
3.604% and 7.528% for A and B, respectively, in each case. For
verification, the synthesized taper was subsequently evaluated by
modeling the nonuniform line with a large number of short, equal-
length constant impedance segments whose values of impedance
follow the synthesized impedance profiles shown in Fig. 5. Five
hundred segments are reasonable for reducing an error due to shifts of
null points by variations of phase constants. The evaluated responses
are shown in Fig. 4. These plots show that the approximate equation
(1) wrongly predicts a reflection of 0.3466 at f = 0 whereas the
correct value is 0.3333, and that (1) for the reflection is accurate as
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Fig. 4. Synthesized frequency characteristics in the lossy case.
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Fig. 5. Synthesized strip width in the lossy case (f = 0).

long as p; is small. The exact numerical results in this paper show
that the present theory provides a generalized theory for determining
the impedance taper profile in lossy and dispersive media.

IV. CoONCLUSION

A new efficient synthesis technique for the specified frequency
response of lossy and dispersive tapered transmission line has been
presented. This technique was accomplished by the optimization

process to extract the optimum null points for the synthesis of the-

desired taper profile in the existence of a loss and dispersion. The
results of synthesizing a microstrip transformer for example shows
that the present synthesis technique with loss is important for design
of high-frequency and high-density integrated circuits giving effect
on the determination of the electrical length.
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Mode Orthogonality Relations and
Field Structure in Chirowaveguides

E. O. Kamenetskii

Abstract—By analyzing the vector and scalar equations for chirowaveg-
uides, two forms of mode orthogonality relations are obtained: the
vector formulated orthogonality and the scalar formulated orthogonality.
The first one is applicable to the general case of open chiroplasma or
chiroferrite waveguides. It is shown that for two parallel-plate isotropic
chirowaveguides, these two forms of orthogonality relations differ. Based
on mode orthogonality relations, it is shown that in chirowaveguides the
polarization of so-called complex modes differs from that of propagating
or evanescent modes. The correlation between field components of two
complex modes that transfer active power flow in chirowaveguides is
obtained.

I. INTRODUCTION

A number of problems related to chirowaveguides have been
investigated and reported [1]-[13]. For example, dispersion char-
acteristics and field distributions in parallel-plate {1]-[3], open-
slab [4], [5], circular [2], [6], [7], and closed rectangular [8], [9]
chirowaveguides have been studied. The surface waves in chiral
layers have been analyzed noting elliptically polarized transverse
electric and magnetic fields in the layers [10]. The theory of wave
propagation in chiroplasma and chiroferrites [11] and the theory of
chiroferrite waveguides [12], have also appeared. It has been pointed
out in [13] that modes in chirowaveguides have interesting and useful
properties of power orthogonality.

The power orthogonality (or vector formulated orthogonality rela-
tions) obtained in [13] for isotropic chirowaveguides may be easily
extended to a more general case of lossless open chiroplasma or
chiroferrite waveguides. Together with this type of orthogonality, one
can also obtain the scalar formulated orthogonality relations. We will
show that the scatar formulated orthogonality are not derived from
the vector formulated orthogonality.
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